Journal of Kermanshah University of Medical Sciences

Published by: Kowsar

Genotoxicity and Cytotoxicity Assessment of Graphene Oxide Nanosheets on HT29 Cells

Masoumeh Heshmati 1 , * , Sajedeh Hajibabae 1 and Nooshin Barikrow 1
Authors Information
1 Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
Article information
  • Journal of Kermanshah University of Medical Sciences: March 2018, 22 (1); e69641
  • Published Online: March 24, 2018
  • Article Type: Research Article
  • Received: September 27, 2017
  • Accepted: March 6, 2018
  • DOI: 10.5812/jkums.69641

To Cite: Heshmati M, Hajibabae S, Barikrow N. Genotoxicity and Cytotoxicity Assessment of Graphene Oxide Nanosheets on HT29 Cells, J Kermanshah Univ Med Sci. 2018 ; 22(1):e69641. doi: 10.5812/jkums.69641.

Copyright © 2018, Journal of Kermanshah University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal. 2014;22(1):105-15. doi: 10.1016/j.jfda.2014.01.009. [PubMed: 24673908].
  • 2. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876-7. doi: 10.1021/ja803688x. [PubMed: 18661992]. [PubMed Central: PMC2597374].
  • 3. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110(1):132-45. doi: 10.1021/cr900070d. [PubMed: 19610631].
  • 4. Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530-4. doi: 10.1126/science.1158877. [PubMed: 19541989].
  • 5. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91. doi: 10.1038/nmat1849. [PubMed: 17330084].
  • 6. Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, et al. Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges. Adv Mater. 2009;21(16):1549-59. doi: 10.1002/adma.200801395.
  • 7. Syama S, Mohanan PV. Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int J Biol Macromol. 2016;86:546-55. doi: 10.1016/j.ijbiomac.2016.01.116. [PubMed: 26851208].
  • 8. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200(3):201-10. doi: 10.1016/j.toxlet.2010.11.016. [PubMed: 21130147].
  • 9. Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep. 2016;6:26508. doi: 10.1038/srep26508. [PubMed: 27216374]. [PubMed Central: PMC4877924].
  • 10. Becker M L, Fagan JA, Gallant ND, Bauer BJ, Bajpai V, Hobbie EK, et al. Cover PICTURE: LENGTH-DEPENDENT UPTAKE of DNA-wrapped single-walled carbon nanotubes (Adv. Mater. 7/2007). Adv Mater. 2007;19(7):393-45. doi: 10.1002/adma.200790026.
  • 11. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007;168(2):121-31. doi: 10.1016/j.toxlet.2006.08.019. [PubMed: 17169512].
  • 12. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. doi: 10.1021/ja01539a017.
  • 13. Thomas P, Umegaki K, Fenech M. Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay. Mutagenesis. 2003;18(2):187-94. doi: 10.1093/mutage/18.2.187. [PubMed: 12621075].
  • 14. Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2(5):1084-104. doi: 10.1038/nprot.2007.77. [PubMed: 17546000].
  • 15. Guo L, Von Dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH. Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small. 2008;4(6):721-7. doi: 10.1002/smll.200700754. [PubMed: 18504717]. [PubMed Central: PMC3209620].
  • 16. Liu J, Yang L, Hopfinger AJ. Affinity of drugs and small biologically active molecules to carbon nanotubes: a pharmacodynamics and nanotoxicity factor? Mol Pharm. 2009;6(3):873-82. doi: 10.1021/mp800197v. [PubMed: 19281188]. [PubMed Central: PMC2689322].
  • 17. Qin W, Li X, Bian WW, Fan XJ, Qi JY. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials. 2010;31(5):1007-16. doi: 10.1016/j.biomaterials.2009.10.013. [PubMed: 19880174].
  • 18. Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H, et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett. 2008;181(3):182-9. doi: 10.1016/j.toxlet.2008.07.020. [PubMed: 18760340].
  • 19. Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168(1):58-74. doi: 10.1016/j.toxlet.2006.11.001. [PubMed: 17141434].
  • 20. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, et al. Biocompatibility of Graphene Oxide. Nanoscale Res Lett. 2011;6(1):8. doi: 10.1007/s11671-010-9751-6. [PubMed: 27502632]. [PubMed Central: PMC3212228].
  • 21. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26-49. doi: 10.1002/smll.200700595. [PubMed: 18165959].
  • 22. Wang L, Lee K, Sun YY, Lucking M, Chen Z, Zhao JJ, et al. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano. 2009;3(10):2995-3000. doi: 10.1021/nn900667s. [PubMed: 19856979].
  • 23. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4(6):3181-6. doi: 10.1021/nn1007176. [PubMed: 20481456].
  • 24. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem. 2009;19(18):2710-4. doi: 10.1039/b821416f.
  • 25. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537-44. doi: 10.1002/smll.200901680. [PubMed: 20033930].
  • 26. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed Engl. 2010;49(12):2114-38. doi: 10.1002/anie.200903463. [PubMed: 20187048].
  • 27. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc. 2009;131(23):8262-70. doi: 10.1021/ja901105a. [PubMed: 19469566].
  • 28. Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44(9):1689-99. doi: 10.1016/j.freeradbiomed.2008.01.028. [PubMed: 18313407]. [PubMed Central: PMC2387181].
  • 29. Li W, Chen C, Ye C, Wei T, Zhao Y, Lao F, et al. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology. 2008;19(14):145102. doi: 10.1088/0957-4484/19/14/145102. [PubMed: 21817752].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments